Crystal Structure and Cationic Motion of *o*-Toluidinium Chloranilate and *m*-Toluidinium Chloranilate Studied by X-ray Diffraction and ¹H NMR

Takeo Fukunaga, Naoki Kumagae, and Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Reprint requests to Prof. H. I.; Fax +81-86-251-7832; E-mail: ishidah@cc.okayama-u.ac.jp

Z. Naturforsch. **58a**, 631 – 637 (2003); received August 5, 2003

The crystal structure of o-toluidinium chloranilate and m-toluidinium chloranilate, $2\text{CH}_3\text{C}_6\text{H}_4$ - $\text{NH}_3^+ \cdot \text{C}_6\text{O}_4\text{Cl}_2^{2-}$, was determined by single crystal X-ray diffraction at room temperature. It was found that o-toluidinium chloranilate (I) is monoclinic, $P2_1/n$ (#14), Z=2, a=5.2184(14), b=7.825(2), c=22.840(5) Å, and $\beta=92.015(19)^\circ$, and m-toluidinium chloranilate (II) is monoclinic, $P2_1/c$ (#14), Z=2, a=11.214(2), b=5.4844(10), c=16.379(6) Å, and $\beta=105.21(2)^\circ$. In these salts, the cations are connected with the anions by N-H...O hydrogen bonds to form 2:1 units of $2\text{CH}_3\text{C}_6\text{H}_4\text{NH}_3^+ \cdot \text{C}_6\text{O}_4\text{Cl}_2^{2-}$ that are located on inversion centers. The $2\text{CH}_3\text{C}_6\text{H}_4\text{NH}_3^+ \cdot \text{C}_6\text{O}_4\text{Cl}_2^{2-}$ units in both salts are connected by other N-H...O hydrogen bonds to build a three-dimensional hydrogen-bond network. Motions of the toluidinium ions in solid (I) and (II) were studied by ^1H NMR spin-lattice relaxation time measurements. Reorientations of the NH $_3^+$ group about the C-N bond axis and the CH $_3$ group about the C-C bond axis were observed, and their motional parameters were evaluated. The internal rotational barriers of the NH $_3^+$ and CH $_3$ groups of an isolated o-toluidinium ion were estimated from ab initio molecular orbital calculations at HF/6-31G(d,p), MP2/6-31G(d,p), and B3LYP/6-31G(d,p) levels of theory.

Key words: Crystal Structure; X-ray Diffraction; Hydrogen Bond; Cationic Motion; MO Calculation.